fulltext.study @t Gmail

Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery

Paper ID Volume ID Publish Year Pages File Format Full-Text
11468 742 2007 8 PDF Available
Title
Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery
Abstract

Nanoparticle (NP) size has been shown to significantly affect the biodistribution of targeted and non-targeted NPs in an organ specific manner. Herein we have developed NPs from carboxy-terminated poly(d,l-lactide–co–glycolide)–block–poly(ethylene glycol) (PLGA–b–PEG–COOH) polymer and studied the effects of altering the following formulation parameters on the size of NPs: (1) polymer concentration, (2) drug loading, (3) water miscibility of solvent, and (4) the ratio of water to solvent. We found that NP mean volumetric size correlates linearly with polymer concentration for NPs between 70 and 250 nm in diameter (linear coefficient=0.99 for NPs formulated with solvents studied). NPs with desirable size, drug loading, and polydispersity were conjugated to the A10 RNA aptamer (Apt) that binds to the prostate specific membrane antigen (PSMA), and NP and NP-Apt biodistribution was evaluated in a LNCaP (PSMA+) xenograft mouse model of prostate cancer. The surface functionalization of NPs with the A10 PSMA Apt significantly enhanced delivery of NPs to tumors vs. equivalent NPs lacking the A10 PSMA Apt (a 3.77-fold increase at 24 h; NP-Apt 0.83%±0.21% vs. NP 0.22%±0.07% of injected dose per gram of tissue; mean±SD, n=4n=4, p=0.002p=0.002). The ability to control NP size together with targeted delivery may result in favorable biodistribution and development of clinically relevant targeted therapies.

Keywords
Drug delivery; Nanoparticle; PLGA; Prostate cancer; Targeting; Aptamer
First Page Preview
Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 5, February 2007, Pages 869–876
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us