fulltext.study @t Gmail

Mechanical properties and in vitro biocompatibility of porous zein scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
11494 744 2006 7 PDF Available
Title
Mechanical properties and in vitro biocompatibility of porous zein scaffolds
Abstract

A porous scaffold utilizing hydrophobic protein zein was prepared by the salt-leaching method for tissue engineering. The scaffolds possessed a total porosity of 75.3–79.0%, compressive Young's modulus of (28.2±6.7)MPa–(86.6±19.9)MPa and compressive strength of (2.5±1.2)MPa–(11.8±1.7)MPa, the percentage degradation of 36% using collagenase and 89% using pepsin during 14 days incubation in vitro. The morphology of pores located on the surface and within the porous scaffolds showed good pore interconnectivity by scanning electron microscopy (SEM). Rat mesebchymal stem cells (MSCs) could adhere, grow, proliferate and differentiate toward osteoblasts on porous zein scaffold. With the action of dexamethasone, the cells showed a relative higher activity of alkaline phosphatase (ALP) and a higher proliferating activity (p<0.05p<0.05) than those of MSCs without dexamethasone.

Keywords
Scaffold; Zein; Mechanical properties; Porosity; Degradation; MSCs
First Page Preview
Mechanical properties and in vitro biocompatibility of porous zein scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 20, July 2006, Pages 3793–3799
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us