fulltext.study @t Gmail

Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
11507 746 2007 7 PDF Available
Title
Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells
Abstract

Recently, calcium sulfate dihydrate has been demonstrated as safe biodegradable osteoconductive bone void filler. However, its exact mechanism of action on bone cells is yet unknown. In this study, the influence of gypsum on gene expression and proliferation of MC3T3-E1 mouse pre-osteoblastic cells was investigated. Cells were cultured on gypsum disc, slice, polymethylmethacrylate (PMMA), or plastic culture plate for 15 days. Cell viability, alkaline phosphatase (ALP) activity and expression profile of 15 genes involved in bone metabolism were measured in cultures. Cell proliferation on gypsum was increased by almost 2-fold, while an inhibitory effect of PMMA on proliferation rate of osteoblasts was noted. Cells cultured on gypsum disc surface exhibited an increased ALP activity and markedly different gene expression profile. Quantitative real-time PCR data indicated the expression of genes that might provide a basis for an osteoinductive potential. MC3T3-E1 cells expressed genes typical of bone fracture healing like type II collagen and fibronectin 1. These effects might be related to the calcium content of gypsum and mediated likely via SMAD3. Our results suggest that gypsum can support new bone formation by its calcium content and modulatory effect on gene expression profile of bone cells.

Keywords
Calcium sulfate; Bone graft; Gene expression; Osteoinduction; Bone healing
First Page Preview
Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 3, January 2007, Pages 393–399
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us