fulltext.study @t Gmail

Osteoprogenitor response to defined topographies with nanoscale depths

Paper ID Volume ID Publish Year Pages File Format Full-Text
11539 747 2006 10 PDF Available
Title
Osteoprogenitor response to defined topographies with nanoscale depths
Abstract

In the development of the next generation of orthopaedic implants for load-bearing applications, an ability to influence osteoprogenitor population activity and function will be highly desirable. This will allow the formation of hard-tissue directly onto the implant, i.e. osseointegration, rather than the formation of fibrous capsules which form around many of the current, non-bioactive, prosthesis. The formation of capsules leads to micromotion due to modulus mismatch and ultimately to fracture and the need for revision surgery.Microtopography and latterly nanotopography have been shown to elicit influence over adhesion, proliferation and gene expression of a wide number of cell types. This study has examined the possibility of modulating cell adhesion using a range of nanometric scale shallow pits and grooves. The topographies were manufactured using photolithography followed by the production of nickel shims and finally embossing into polymethylmethacrylate.Cell testing with human osteoprogenitor populations showed that the nanotopographies allowed control of cell adhesion, cytoskeleton, growth and production of the osteoblastic markers osteocalcin and osteopontin. It is concluded that the human bone marrow stromal cells are highly responsive to nanoscale features.

Keywords
Mesenchymal stem cells; Osteoprogenitor cells; Nanotopography; Nanobioscience; Cell culture
First Page Preview
Osteoprogenitor response to defined topographies with nanoscale depths
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 8, March 2006, Pages 1306–1315
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us