fulltext.study @t Gmail

Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers

Paper ID Volume ID Publish Year Pages File Format Full-Text
11588 748 2004 7 PDF Available
Title
Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers
Abstract

A key objective of bioengineering is the development of new scaffolding biomaterials with appropriate mechanical and biological properties such as strength, elasticity and biocompatibility that mimic the native host connective tissue. Here we describe the production and properties of massive synthetic elastin assemblies formed by chemically cross-linking recombinant human tropoelastin with bis(sulfosuccinimidyl) suberate, permitting the construction of elastic sponges, sheets and tubes. The innate characteristics of synthetic elastin constructs are common with those of native elastin. The Young's Modulus ranged from 220 to 280 kPa with linearity of extension to at least 150%. Synthetic elastin was extensible by 200–370%. The constructs behaved as hydrogels and displayed stimuli-responsive characteristics towards temperature and salt concentrations. Intrinsic fluorescence spectroscopy demonstrated that the elastin fluorophore is a feature of the polypeptide. Scanning electron microscopy allowed us to construct a model of elastin assembly that was driven by the lateral association of small twisted rope-like fibrils. FT–Raman spectra at 100% strain gave amide I and III peaks that correlated with a stretch-dependent increase in α-helical content. Growth and proliferation of cells were supported in vitro while in vivo implants were well tolerated. We conclude that synthetic elastin has potential as a novel biomaterial that can be easily molded into a variety of shaped tissue substrates and has a range of properties that are required for elastic, cell-interacting and compliant applications. Furthermore, its in vitro construction provides a powerful tool to probe the early stages of elastin assembly and the molecular basis for its elasticity.

Keywords
Biocompatibility; Biomimetic material; ECM; Elasticity; Elastin; Mechanical properties
First Page Preview
Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 20, September 2004, Pages 4921–4927
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us