fulltext.study @t Gmail

A quantitative method for evaluating the degradation of biologic scaffold materials

Paper ID Volume ID Publish Year Pages File Format Full-Text
11632 750 2007 4 PDF Available
Title
A quantitative method for evaluating the degradation of biologic scaffold materials
Abstract

Scaffolds derived from naturally occurring extracellular matrix (ECM) have found extensive use in the fields of tissue engineering and regenerative medicine. Many of these scaffolds are designed to degrade rapidly as they are replaced by new host tissue. Other scaffolds are chemically crosslinked to slow the rate of degradation or add strength to the scaffold. Commercially available ECM scaffolds have considerable variability with regards to tissue origin and methods of processing, and little is known about their rate of degradation and the fate of their degradation products. A novel method is described herein to integrally label ECM with a radioactive isotope (14C). It was found that a number of tissues are efficiently labeled, including heart, liver, trachea, pancreas, small intestine, and urinary bladder tissue. Of the tissues analyzed, only spleen was not found to contain detectable levels of 14C. The technique is extremely sensitive, accurate, and safe, but requires access to accelerator mass spectrometry, and is expensive and time consuming. This model represents the first described quantitative method to determine the rate of degradation for an ECM scaffold and to track the fate of the degradation products.

Keywords
Extracellular matrix scaffold; Radioactive labeling; Degradation
First Page Preview
A quantitative method for evaluating the degradation of biologic scaffold materials
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 2, January 2007, Pages 147–150
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us