fulltext.study @t Gmail

Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption

Paper ID Volume ID Publish Year Pages File Format Full-Text
11646 750 2007 9 PDF Available
Title
Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption
Abstract

The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone–cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50 wt%), ethylene vinyl alcohol (SEVA-C; 50/50 wt%) and polycaprolactone (SPCL; 30/70 wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment.

Keywords
Starch-based materials; Oxygen-based rfGD; Protein adsorption; Cell adhesion and proliferation
First Page Preview
Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 28, Issue 2, January 2007, Pages 307–315
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us