fulltext.study @t Gmail

Soluble osteogenic molecular signals and the induction of bone formation ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
11652 751 2006 16 PDF Available
Title
Soluble osteogenic molecular signals and the induction of bone formation ☆
Abstract

The induction of bone formation starts by erecting scaffolds of smart biomimetic matrices acting as insoluble signals affecting the release of soluble osteogenic molecular signals. The cascade of bone differentiation by induction develops as a mosaic structure singly initiated by the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family. The osteogenic signals when combined with an insoluble signal or substratum initiate de novo bone formation by induction and are deployed singly, synergistically and synchronously to sculpt the architecture of the mineralized bone/bone marrow organ. The osteogenic proteins of the TGF-β superfamily are the common molecular initiators deployed for embryonic development and the induction of bone in postnatal osteogenesis, whereby molecules exploited in embryonic development are re-deployed in postnatal tissue morphogenesis as a recapitulation of embryonic development. The pleiotropy of the osteogenic proteins of the TGF-β superfamily is highlighted by the apparent redundancy of molecular signals initiating bone formation by induction including the TGF-β isoforms per se, powerful inducers of endochondral bone but in the primate only. Bone induction by the TGF-β isoforms in the primate is site and tissue specific with substantial endochondral bone induction in heterotopic sites but with absent osteoinductivity in orthotopic calvarial sites on day 30 and only limited osteogenesis pericranially on day 90. Ebaf/Lefty-A, a novel member of the TGF-β superfamily, induces chondrogenesis in calvarial defects of Papio ursinus and bone regeneration across the defect on day 30 and 90, respectively. The strikingly pleiotropic effects of the bone morphogenetic and osteogenic proteins (BMPs/OPs) spring from amino acid sequence variations in the carboxy-terminal domain and in the transduction of distinct signalling pathways by individual Smad proteins after transmembrane serine/threonine kinase complexes of type I and II receptors. Predictable bone regeneration in clinical contexts requires information concerning the expression and cross regulation of gene products of the TGF-β superfamily. OP-1, BMP-3, TGF-β1 and type IV collagen mRNAs expression correlates to the morphological induction and maintenance of engineered ossicles by the hOP-1 osteogenic devices in the non-human primate P. ursinus. Amino-acid sequence variations amongst BMPs/OPs in the carboxy terminal domain confer the structure/activity profile responsible for the pleiotropic activity that controls tissue induction and morphogenesis of a variety of tissues and organs by different BMPs/OPs which are helping to engineer skeletal tissue regeneration in molecular terms.

Keywords
Osteogenic proteins; TGF-β superfamily; Redundancy; Structure/activity profile; Species and site tissue specificity
First Page Preview
Soluble osteogenic molecular signals and the induction of bone formation ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 6, February 2006, Pages 807–822
Authors
,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us