fulltext.study @t Gmail

Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance

Paper ID Volume ID Publish Year Pages File Format Full-Text
11653 751 2006 9 PDF Available
Title
Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance
Abstract

Hydroxyapatite and ‘duplex’ hydroxyapatite + titania bond coat layers were deposited onto Ti6Al4 V substrates by atmospheric plasma spraying (APS) at moderate plasma enthalpies. From as-sprayed coatings and coatings incubated in simulated body fluid (r-SBF) electron-transparent samples were generated by focused ion beam (FIB) excavation and investigated by STEM/TEM in conjuction with energy-dispersive X-ray analysis (EDX), electron diffraction (ED), and electron energy loss spectroscopy (EELS).Adjacent to the metal surface a thin layer of amorphous calcium phosphate (ACP) was deposited whose Ca/P ratio is determined by the presence or absence of the bond coat. No clear indication of a Ca–Ti oxide reaction layer was found at the interface titania bond coat/calcium phosphate. After in vitro incubation of duplex coatings for 24 weeks Ca-deficient defect apatite needles precipitated from ACP. During incubation of hydroxyapatite without a bond coat for 1 week diffusion bands were formed within the ACP of 1–2 μm width parallel to the interface metal/coating, presumably by a dissolution–precipitation sequence.

Keywords
Hydroxyapatite coatings; Calcium phosphate; In vitro test; Electron microscopy; Focused ion beam excavation
First Page Preview
Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 6, February 2006, Pages 823–831
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us