fulltext.study @t Gmail

Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion

Paper ID Volume ID Publish Year Pages File Format Full-Text
11656 751 2006 9 PDF Available
Title
Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion
Abstract

Biomimetic poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) brushes with graft density 0.06–0.39 chains/nm2 and chain length 5–200 monomer units were prepared from silicon wafer surfaces by combining self-assembly of initiator and surface-initiated atom transfer radical polymerization (ATRP). Water contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy were used to characterize the modified surfaces. These surfaces with well-controlled poly(MPC) brushes were tested for protein repelling performance. Fibrinogen adsorption from tris-buffered saline at pH 7.4 decreased significantly with increasing graft density and/or chain length of poly(MPC) and reached a level of <10 ng/cm2 at graft density ⩾0.29 chains/nm2 and chain length ⩾100 units, compared to ca. 570 ng/cm2 for the unmodified samples. While the fibrinogen adsorption was determined by both graft density and chain length, it showed a stronger dependence on graft density than on chain length.

Keywords
Surface modification; Non-biofouling; Protein adsorption; Biomimetic polymer; Atom transfer radical polymerization; Grafting
First Page Preview
Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 6, February 2006, Pages 847–855
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us