fulltext.study @t Gmail

Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
11684 753 2006 9 PDF Available
Title
Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells
Abstract

Understanding the interactions between microfabricated synthetic interfaces and cultured cells expressing a neuronal phenotype are critical for advancing research in the field of neural engineering such as neural recording and stimulation and neural microdevice interactions with the human brain. Here we explore the integration of these two components for therapeutic applications of neural prostheses. Microfabricated silicon nanoporous membranes were investigated for their effects on survival, proliferation, and differentiation of the well-known PC12 clonal line. Specifically, cell morphology, examined through fluorescence staining, were comparable in many respects on both silicon membrane and widely-used polystyrene culture surfaces. The attachment and differentiation of PC12 cells cultured on collagen and laminin-modified membranes and standard tissue culture surfaces were similar. Lastly, the differentiation response and tyrosine hydroxylase activity of PC12 cells embedded in a type I collagen matrix on experimental membrane substrates while exposed to NGF were significant and indistinguishable from tissue-culture polystyrene (TC-PS) surfaces. Results from this research suggest that microfabricated silicon nanoporous membranes may be useful, biocompatible permselective structures for neuroprosthetic applications and that collagen may be a useful immobilizing matrix for PC12 cells loaded in implantable macroencapsulation devices designed for the treatment of neurodegenerative disorders.

Keywords
Biocompatibility; Cell encapsulation; Nanoporous membranes; Neural prosthesis; PC12; Silicon
First Page Preview
Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 16, June 2006, Pages 3075–3083
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us