fulltext.study @t Gmail

Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies

Paper ID Volume ID Publish Year Pages File Format Full-Text
11696 754 2004 10 PDF Available
Title
Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies
Abstract

Cell shapes induced by cell–substratum interactions are linked with proliferation, differentiation or apoptosis of cells. To clarify the relevance of specific surface characteristics, we applied self-assembled monolayers (SAM) of alkyl silanes exhibiting a variety of terminating functional groups. We first characterised the SAMs on glass or silicon wafers by measuring wettability, layer thickness and roughness. Water contact angle data revealed that methyl (CH3), bromine (Br), and vinyl (CH=CH2) groups lead to hydrophobic surfaces, while amine (NH2) and carboxyl (COOH) functions lead to moderately wettable surfaces, and polyethylene glycol (PEG) and hydroxyl (OH) groups created wettable substrata. The surfaces were found to be molecular smooth except for one type of NH2 surface. The SDS-PAGE analysis of proteins adsorbed from bovine serum to the SAMs showed less protein adsorption to PEG and OH than to CH3, NH2 and COOH. Immunoblotting revealed that a key component of adsorbed proteins is vitronectin while fibronectin was not detectable. The interaction of human fibroblasts with CH3, PEG and OH terminated SAMs was similarly weak while strong attachment, spreading, fibronectin matrix formation and growth were observed on COOH and NH2. The strong interaction of fibroblasts with the latter SAMs was linked to an enhanced activity of integrins as observed after antibody-tagging of living cells.

Keywords
Self-assembled monolayers; Protein adsorption; Fibronectin; Vitronectin; Integrins
First Page Preview
Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 14, June 2004, Pages 2721–2730
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us