fulltext.study @t Gmail

Novel biodegradable electrospun membrane: scaffold for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
11761 757 2004 8 PDF Available
Title
Novel biodegradable electrospun membrane: scaffold for tissue engineering
Abstract

Nonwoven fibrous matrixes have been widely used as scaffolds in tissue engineering, and modification of microstructure of these matrices is needed to organize cells in three-dimensional space with spatially balanced proliferation and differentiation required for functional tissue development. The objective of this study was fabrication of nanofibrous matrix from novel biodegradable poly(p-dioxanone-co-l-lactide)-block-poly(ethylene glycol) (PPDO/PLLA-b-PEG) copolymer, and to examine cell proliferation, morphology of cell–matrix interaction with the electrospun nanofibrous matrix. The electrospun structure composed of PPDO/PLLA-b-PEG fibers with an average diameters of 380 nm, median pore size 8 μm, porosity more than 80% and mechanical strength 1.4 MPa, is favorable for cell–matrix interaction and supports the active biocompatibility of the structure. NIH 3T3 fibroblast cell seeded on the structure tend to maintain phenotypic shape and guided growth according to nanofiber orientation. Good capability of the nanofibrous structure for supporting the cell attachment and proliferation are observed. This novel biodegradable scaffold will be applicable for tissue engineering based upon its unique architecture, which acts to support and guide cell growth.

Keywords
Electrospun fiber; PPDO/PLLA-b-PEG; Scaffold; Tissue engineering
First Page Preview
Novel biodegradable electrospun membrane: scaffold for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 13, June 2004, Pages 2595–2602
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us