fulltext.study @t Gmail

Collagen–hyaluronic acid scaffolds for adipose tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
1184 78 2010 12 PDF Available
Title
Collagen–hyaluronic acid scaffolds for adipose tissue engineering
Abstract

Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen–hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity ∼85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen–HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen–HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen–HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen–HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen–HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro.

Keywords
Collagen; Crosslinking; Freeze-drying; Hyaluronic acid; Scaffolds
First Page Preview
Collagen–hyaluronic acid scaffolds for adipose tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 10, October 2010, Pages 3957–3968
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us