fulltext.study @t Gmail

Bioactive hydrogels based on Designer Collagens

Paper ID Volume ID Publish Year Pages File Format Full-Text
1185 78 2010 9 PDF Available
Bioactive hydrogels based on Designer Collagens

Designer Collagens are based on streptococcal collagen-like (Scl) proteins that form a triple helix similar to mammalian collagens but that are non-platelet aggregating. In contrast to the numerous cell-binding sites on collagen, Scl2 from Streptococcus pyogenes serotype M28 does not contain any known cell-binding sites and thus provides a blank slate in terms of cellular interactions. In the current study, Scl2 protein was modified to include receptor binding motifs that interact with α1 and/or α2 integrin subunits. The modfied Scl2 proteins have been demonstrated to mediate differential endothelial cell (EC) and smooth muscle cell (SMC) adhesion via these integrins and to retain the non-platelet aggregating properties of the “parent” Scl2. Thromboresistant scaffolds which selectively bind ECs vs. SMCs would be desirable for vascular repair or replacement.Despite the potential of these Scl proteins in vascular applications, the utility of this recombinant protein family is currently limited to coatings due to the inability of Scl proteins to assemble into stable three-dimensional networks. To address this limitation, the Scl2 proteins were functionalized with photocrosslinking sites to enable incorporation into a hydrogel matrix. Characterization studies confirmed that the functionalization of the Scl2 proteins did not disrupt triple helix conformation, integrin binding or cell adhesion. Bioactive hydrogels were fabricated by combining the functionalized Scl2 proteins with poly(ethylene glycol) diacrylate (PEGDA) and photocrosslinking. EC and SMC adhesion studies confirmed cell-specific adhesion due to selective integrin binding to the two receptor binding motifs investigated. These results serve to highlight the potential of this novel biomaterial platform in the development of improved tissue engineered vascular grafts.

Scl proteins; Hydrogel; Endothelial cells; Smooth muscle cells
First Page Preview
Bioactive hydrogels based on Designer Collagens
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 6, Issue 10, October 2010, Pages 3969–3977
, , , , , , , ,
Physical Sciences and Engineering Chemical Engineering Bioengineering