fulltext.study @t Gmail

Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
11857 762 2006 11 PDF Available
Title
Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering
Abstract

A biodegradable and flexible poly(l-lactide-co-caprolactone) (PLLC) copolymer was synthesized and surface modification has been performed aiming at application as a scaffold in esophageal tissue engineering. The PLLC membrane surface was aminolyzed by 1,6-hexanediamine to introduce free amino groups. Using these amino groups as bridges, fibronectin and collagen were subsequently bonded with glutaraldehyde as a coupling agent. The presence of free amino groups on the aminolyzed PLLC surface was quantified using fluorescamine analysis method, which revealed that the surface NH2 density increased and eventually saturated with increasing 1,6-hexanediamine concentration or reaction time. X-ray photoelectron spectroscopy (XPS) confirmed the presence of both proteins separately on the modified PLLC surface. Water contact angle measurements evaluate the wettability of modified and unmodified PLLC surfaces. Protein-bonded surface presented more hydrophilic and homogeneous, yet PLLC can also adsorb some protein molecules. In vitro long-term (12 d) culture of porcine esophageal cells proved that fibronectin- and collagen-modified PLLC surface (denoted PLLC–Fn and PLLC–Col, respectively) can more effectively support the growth of smooth muscle cells and epithelial cells; both modified and unmodified PLLC support fibroblasts growth. Mitochondrial activity assay and cell morphology observation indicate that the PLLC–Fn surface is more favorable to epithelium regeneration than PLLC–Col. These culture results provide much valuable information for our subsequent research on the construction of artificial scaffolds with esophageal function. Fibronectin-integrated PLLC will be a good candidate scaffold to support the growth of all types of esophageal cells.

Keywords
Poly(l-lactide-co-caprolactone) copolymer; Fibronectin; Collagen; Surface modification; Esophageal tissue engineering
First Page Preview
Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 1, January 2006, Pages 68–78
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us