fulltext.study @t Gmail

Platelet interactions with calcium-phosphate-coated surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
11868 764 2005 11 PDF Available
Title
Platelet interactions with calcium-phosphate-coated surfaces
Abstract

Many studies have shown that calcium-phosphate (CaP)-coated endosseous implants exhibit more peri-implant bone formation and bone contact at early healing times than uncoated implants. Since the rate of healing is influenced by blood/implant interactions and possibly the degree of blood platelet activation, the aim of this study was to determine whether the topography, microtopography, or the presence of calcium (Ca) and phosphate (PO4) ions in the implant surface plays a predominant role in platelet activation. We define the threshold between topography and microtopography as the limit of the scale range of platelets themselves; thus, a microtopographic surface is defined by one which exhibits features ⩽3 μm. With the help of four international collaborating laboratories, we prepared 11 titanium and CaP-modified titanium surfaces each with different (micro)topographies and interrogated these surfaces with both platelet adhesion (lactate dehydrogenase activity) and platelet activation (microparticle formation and P-selectin expression) assays. Our results show that: calcium (Ca)- and phosphate (PO4)-containing surfaces of increasing surface microtopographical complexity exhibit increasing platelet activation; surfaces with similar surface microtopographies show similar levels of platelet activation regardless of the presence of Ca and PO4 in the surface; and that surface microtopography is responsible for platelet activation rather than the presence of Ca and PO4 in the surface.

Keywords
Calcium phosphate; Coating; Surface topography; Microtopography; Platelet activation; LDH assay; P-selectin; Platelet microparticles; Flow cytometry; Bone wound healing
First Page Preview
Platelet interactions with calcium-phosphate-coated surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 26, September 2005, Pages 5285–5295
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us