fulltext.study @t Gmail

Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials

Paper ID Volume ID Publish Year Pages File Format Full-Text
11882 764 2005 13 PDF Available
Title
Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials
Abstract

This paper presents some results concerning the size-controlled hydroxyapatite nanoparticles obtained in aqueous media in a biopolymer matrix from soluble precursors salts. Taking the inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite was investigated. A stepwise co-precipitation approach was used to obtain different types of composites by means of different ratio between components. The synthesis of hydroxyapatite was carried out in the chitosan matrix from calcium chloride and sodium dihydrogenphosphate in alkaline solutions at moderate pH of 10–11 for 24 h. Our research is focused on studying and understanding the structure of this class of composites, aiming at the development of novel materials, controlled at the nanolevel scale. The X-ray diffraction technique was employed in order to study the kinetic of hydroxyapatite formation in the chitosan matrix as well as to determine the HAp crystallite sizes in the composite samples. The hydroxyapatite synthesized using this route was found to be nano-sized (15–50 nm). Moreover, applying an original approach to analyze the (0 0 2) XRD diffraction peak profile of hydroxyapatite by using a sum of two Gauss functions, the bimodal distribution of nanosized hydroxyapatite within the chitosan matrix was revealed. Two types of size distribution domains such as cluster-like (between 200 and 400 nm), which are the habitat of ‘‘small’’ hydroxyapatite nanocrystallites and scattered-like, which are the habitat of ‘‘large’’ hydroxyapatite nanocrystallites was probed by TEM and CSLM. The structural features of composites suggest that self-assembly processes might be involved. The composites contain nanosized hydroxyapatite with structural features close to those of biological apatites that make them attractive for bone tissue engineering applications.

Keywords
Nanosized hydroxyapatite; Chitosan; Organic–inorganic composite; Bimodal distribution; Self-assembly behavior
First Page Preview
Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 26, September 2005, Pages 5414–5426
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us