fulltext.study @t Gmail

A histological evaluation for guided bone regeneration induced by a collagenous membrane

Paper ID Volume ID Publish Year Pages File Format Full-Text
11932 767 2005 9 PDF Available
Title
A histological evaluation for guided bone regeneration induced by a collagenous membrane
Abstract

This study was designed to evaluate the histological changes during ossification and cellular events including osteogenic differentiation responding to collagenous bioresorbable membranes utilized for GBR. Standardized artificial bony defects were prepared at rat maxillae, and covered with a collagenous bioresorbable membrane. These animals were sacrificed at 1, 2, 3 and 4 weeks after the GBR-operation. The paraffin sections were subject to tartrate resistant acid phosphatase (TRAP) enzyme histochemistry and immunohistochemistry for alkaline phosphatase (ALP), osteopontin (OP) and osteocalcin (OC). In the first week of the experimental group, woven bone with ALP-positive osteoblasts occupied the lower half of the cavity. The collagenous membrane included numerous ALP-negative cells and OP-immunoreactive extracellular matrices. At 2 weeks, the ALP-, OP- and OC-immunoreactivity came to be recognizable in the region of collagenous membrane. Since ALP-negative soft tissue separated the collagenous membrane and the new bone originating from the cavity bottom, the collagenous membrane appeared to induce osteogenesis in situ. At 3 weeks, numerous collagen fibers of the membrane were embedded in the adjacent bone matrix. At 4 weeks, the membrane-associated and the cavity-derived bones had completely integrated, showing the same height of the periosteal ridge as the surrounding alveolar bones. The collagen fibers of a GBR-membrane appear to participate in osteogenic differentiation.

Keywords
Guided bone regeneration (GBR); Resorbable membrane; Osteoblast; Bone defect; Bone formation
First Page Preview
A histological evaluation for guided bone regeneration induced by a collagenous membrane
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 31, November 2005, Pages 6158–6166
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us