fulltext.study @t Gmail

Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
11957 769 2005 9 PDF Available
Title
Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds
Abstract

The response of engineered meniscal cartilage constructs to stirring-induced mixing in spinner flasks was investigated. Polyethylene terephthalate scaffolds were seeded with meniscal fibrochondrocytes from 6 month-old sheep and cultured under a variety of stirring regimes for 28 days. Stirring-induced mixing increased up to 7-fold the deposition of glucosaminoglycans and up to 3-fold the deposition of collagen, when compared to static cultures. High and medium intensity stirring induced rapid cell proliferation, with maximal cell densities achieved within the first seven days of cultivation. Under these conditions, collagen and glucosaminoglycan deposition occurred predominantly in association with cell proliferation, the specific deposition rate of these biopolymers decreasing markedly after 7 days of cultivation, when the cell number reached a plateau. Constructs exposed to the highest intensity stirring had the highest levels of collagen and glucosaminoglycans and a more homogeneous cell distribution. As the success of the integration at a repair site in the knee of a meniscal construct is likely to be dependent on the cellular activity of the construct, these studies suggest that cultivation of meniscal cartilage constructs, under these conditions, should not extend for more than 7 days.

Keywords
Meniscus; Cartilage; Mixing; ECM; PET
First Page Preview
Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 23, August 2005, Pages 4828–4836
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us