fulltext.study @t Gmail

Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment

Paper ID Volume ID Publish Year Pages File Format Full-Text
12017 773 2003 8 PDF Available
Title
Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment
Abstract

There is no ideal material for craniofacial bone repair at present. The aim of this study was to test the biocompatibility of polycaprolactone (PCL) synthesised by a novel method allowing control of molecular weight and degradation rate, with regard to it being used as matrix for a biodegradable composite for craniofacial bone repair. Human primary craniofacial cells were used, isolated from paediatric skull after surgery. Cell responses were analysed using various assays and antibody staining. Cells attached and spread on the PCL in a similar manner to the Thermanox controls as shown by phalloidin staining of F-actin. Cells maintained the osteoblast phenotype as demonstrated by alkaline phosphatase assay and antibody staining throughout the time points studied, up to 28 days. Cells proliferated on the PCL as shown by a DNA assay. Collagen-1 staining showed extensive production of a collagen-1 containing extracellular matrix, which was also shown to be mineralised by alizarin red staining. Short-term (up to 48 h) attachment studies and long-term (up to 28 days) expression of markers of the osteoblast phenotype have been demonstrated on the PCL. This new method of synthesising PCL shows biocompatibility characteristics that give it potential to be used for craniofacial bone repair.

Keywords
Craniofacial osteoblasts; Bone repair; Degradable; Polycaprolactone
First Page Preview
Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 27, December 2003, Pages 4905–4912
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us