fulltext.study @t Gmail

The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels

Paper ID Volume ID Publish Year Pages File Format Full-Text
12042 775 2006 10 PDF Available
Title
The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels
Abstract

Appropriate target reinnervation and functional recovery after spinal cord injury depend on longitudinally directed regrowth of transected axons. To assess the capacity to promote directed axon regeneration, alginate-based highly anisotropic capillary hydrogels (ACH) were introduced into an axon outgrowth assay in vitro and adult rat spinal cord lesions in vivo. In an entorhino-hippocampal slice culture model, alginate-based scaffolds elicit highly oriented linear axon regrowth and appropriate target neuron reinnervation. Coating of alginate-based ACH with the extracellular matrix components collagen, fibronectin, poly l-ornithine and laminin did not alter the axon regrowth response as compared to uncoated alginate-based ACH. After implantation into acute cervical spinal cord lesions in adult rats, alginate-based ACH integrate into the spinal cord parenchyma without major inflammatory responses, maintain their anisotropic structure and in parallel to findings in vitro induce directed axon regeneration across the artificial scaffold. Furthermore, adult neural progenitor cells (NPC), which have been shown to promote cell-contact-mediated axon regeneration, can be seeded into alginate-based ACH as a prerequisite to further improve the regenerative capacity of these artificial growth supportive matrices. Thus, alginate-based ACH represent a promising strategy to induce directed nerve regrowth following spinal cord injury.

Keywords
Self-assembly; Stem cell; Nerve regeneration; Nerve tissue engineering; Hydrogel; Alginate
First Page Preview
The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 27, Issue 19, July 2006, Pages 3560–3569
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us