fulltext.study @t Gmail

Conformational analysis of heparin binding peptides

Paper ID Volume ID Publish Year Pages File Format Full-Text
12269 786 2005 8 PDF Available
Title
Conformational analysis of heparin binding peptides
Abstract

A properly engineered biomaterial for dental/orthopaedic applications must induce specific responses from the osteoblasts at the implant site. A most desirable response is an efficient adhesion, as it represents the first phase in the cell/material interaction and the quality of this phase will influence the cell's capacity to organize into a new functional tissue. The four osteoblast-adhesive peptides discussed in this paper are mapped on the 339–364 sequence (339MAPRPSLAKKQRFRHRNRKGYRSQRG364) located in the primary heparin-binding site of human vitronectin (HVP). Adsorbed on a polystyrene scaffold, these peptides display different adhesive activities towards osteoblasts. In this paper we report on the structural analysis in solution of the peptides through NMR and computational techniques. We find that the peptides with the highest adhesive activities display a hydrophobic patch opposite to the charged surface candidate to interact with heparin. These findings suggest that the peptides might adsorb on the polystyrene support in a favourable orientation for their activity. Furthermore, molecular models obtained for the four peptides in solution were used in rigid docking simulations with a heparin model. Assuming that the peptide solution conformations are not very different from the polystyrene-adsorbed structures, the simulations reveal that peptide adhesive activity is also affected by the number of ionic interactions and spacing between charged residues.

First Page Preview
Conformational analysis of heparin binding peptides
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 16, June 2005, Pages 3207–3214
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us