fulltext.study @t Gmail

Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel

Paper ID Volume ID Publish Year Pages File Format Full-Text
12279 786 2005 11 PDF Available
Title
Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel
Abstract

In this contribution, a novel smart drug delivery system (DDS) consisting of hydroxyl-functionalized glycerol poly(ε-caprolactone) (PGCL)-based microspheres and poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was developed for prolonged and sustained controlled drug release. Various amounts PGCL-based microspheres were incorporated physically into temperature sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel to form the novel DDSs. Resulting DDSs were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and compression modulus measurements to investigate the morphological, thermal, and mechanical properties. The temperature dependence of swelling ratio and response kinetics upon heating or cooling were also investigated to understand the smart properties, i.e., temperature sensitive properties of these DDSs. Finally, ovalbumin (OVA), used as the model drug, was loaded into PGCL-based microspheres to examine and compare the effects of controlled release at different temperature (22 and 37 °C) of these novel smart DDSs.

Keywords
Drug delivery system; PNIPAAm hydrogel; PGCL-based microsphere; Temperature sensitive
First Page Preview
Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 16, June 2005, Pages 3299–3309
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us