fulltext.study @t Gmail

The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes

Paper ID Volume ID Publish Year Pages File Format Full-Text
12311 789 2005 7 PDF Available
Title
The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes
Abstract

Polyelectrolyte complexes (PEC) were prepared from chitosan as the polycation and several synthesized functional anion polysaccharides, and their effects on cell attachment, morphology, proliferation and differentiation were estimated using normal human osteoblasts (NHOst). After a 1-week incubation, PEC made from polysaccharides having carboxyl groups as polyanions showed low viability of NHOst on it although the NHOst on it showed an enhancement in their differentiation level. On the other hand, NHOst on PEC made from sulfated or phosphated polysaccharides showed similar attachment and morphology to those on the collagen-coated dish. When the number of NHOst was estimated after 1 week, the number on the PEC was ranged from 70% to 130% of those on the collagen-coated dish, indicating few effects of these PEC on cell proliferation. In addition, NHOst on PEC films made from sulfated polysaccharides differentiated to a level very similar to that observed on the collagen-coated dish, indicating that these PEC films maintain the normal potential of NHOst to both proliferate and differentiate. Measurement of gap junctional intercellular communication of NHOst on PEC revealed that PEC did not inhibit communication, suggesting that PEC films have few effects on cell homeostasis. Thus, PEC made from the sulfated polysaccharide may be a useful material as a new scaffold for bone regeneration.

Keywords
Polyelectrolyte complex; Normal human osteoblasts; Cell proliferation; Cell differentiation; Gap junctional intercellular communication
First Page Preview
The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 25, September 2005, Pages 5138–5144
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us