fulltext.study @t Gmail

Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant

Paper ID Volume ID Publish Year Pages File Format Full-Text
12312 789 2005 8 PDF Available
Title
Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant
Abstract

Recombinant human bone morphogenetic protein (rhBMP)-2 in a block copolymer composed of poly-d,l-lactic acid with randomly inserted p-dioxanone and polyethylene glycol (PLA-DX-PEG) as a carrier and porous β-tricalcium phosphate (β-TCP) blocks were used to generate a new fully absorbable osteogenic biomaterial. The bone regenerability of the rhBMP-2/PLA-DX-PEG/β-TCP composite was studied in a critical-sized rabbit bone defect model. In an initial study, a composite of PLA-DX-PEG (250 mg) and β-TCP (300 mg) loaded with or without rhBMP2 (50 μg) was implanted into a 1.5 cm intercalated bone defect created in a rabbit femur. Defects were assessed by biweekly radiography until 8 weeks postoperatively. The bony union of the defect was recognized only in the BMP-loaded group. To obtain further data on biomechanical and remodeling properties, another BMP-loaded composites group was made and observed up to 24 weeks. All defects were completely repaired without residual traces of implants. Anatomical and mechanical properties of the repaired bone examined by histology, 3-dimensional CT (3D-CT) and mechanical testing were essentially equivalent to the nonoperated-on femur at 24 weeks. These experimental results indicate that fully absorbable rhBMP-2/PLA-DX-PEG/β-TCP is a promising composite having osteogenicity efficient enough for repairing large bone defects.

Keywords
BMP (bone morphogenetic protein); Bone tissue engineering; Biodegradation; Osteoconduction; Drug delivery; Calcium phosphate
First Page Preview
Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 25, September 2005, Pages 5145–5152
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us