fulltext.study @t Gmail

Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics

Paper ID Volume ID Publish Year Pages File Format Full-Text
12353 791 2005 9 PDF Available
Title
Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics
Abstract

In the present work, constitutive models for densification and grain growth were employed to investigate the sintering behavior of pure hydroxyapatite ceramics. For densification study, lattice diffusion, grain-boundary diffusion, and interface reaction mechanisms, and for grain-growth study, surface diffusion mechanism, were considered respectively. Hydroxyapatite ceramics were pressurelessly sintered. The sintering results were discussed and compared with the modeling results. Based on the constitutive models employed and the experimental results obtained, grain-boundary diffusion was identified as the dominant mechanism for the densification of the investigated hydroxyapatite. The grain-growth model provided a good prediction to the grain growth of the investigated hydroxyapatite. The activation energies for densification and grain growth of hydroxyapatite ceramics were evaluated as 1150±40 and 1020±40 KJ mol−1, respectively.

Keywords
Constitutive modeling; Densification; Grain growth; hydroxyapatite
First Page Preview
Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 14, May 2005, Pages 1613–1621
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us