fulltext.study @t Gmail

The decrease of particle-induced osteolysis after a single dose of bisphosphonate

Paper ID Volume ID Publish Year Pages File Format Full-Text
12372 791 2005 6 PDF Available
Title
The decrease of particle-induced osteolysis after a single dose of bisphosphonate
Abstract

The most common cause of implant failure in joint replacement is aseptic loosening due to particle-induced osteolysis. Bisphosphonates have been shown to be effective against particle-induced osteolysis when administered daily. We investigated the effect of a single subcutaneous dose of a more potent third generation bisphosphonate on particle-induced osteolysis.We utilized the murine calvaria osteolysis model in C57BL/J6 mice. Bone resorption was measured as resorption within the midline suture using Giemsa staining. Twenty-eight mice were used, seven per group. Seven animals were treated with a single dose of zoledronic acid (ZA) directly after surgery and seven animals were treated four days postoperatively. For statistical analysis one-way ANOVA and a Student's t-test were used.Bone resorption was 0.26±0.09 mm2 in animals with particle implantation, 0.14±0.05 mm2 in animals with particle implantation and ZA treatment directly after surgery (p=0.0047), and 0.15±0.05 mm2 in animals with particle implantation and ZA treatment on the fourth postoperative day (p=0.006).In conclusion, particle-induced bone resorption was markedly decreased by a single s.c. dose of a third generation bisphosphonate. This important new finding holds great promise, because single dose treatment of particle-induced osteolysis may reduce side effects compared to repeated application of bisphosphonates.

Keywords
Osteolysis; Wear debris; Polyethylene; Particulates; Osteoclast
First Page Preview
The decrease of particle-induced osteolysis after a single dose of bisphosphonate
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 14, May 2005, Pages 1803–1808
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us