fulltext.study @t Gmail

Differential regulation of osteoblasts by substrate microstructural features

Paper ID Volume ID Publish Year Pages File Format Full-Text
12376 791 2005 11 PDF Available
Title
Differential regulation of osteoblasts by substrate microstructural features
Abstract

Microtextured titanium implant surfaces enhance bone formation in vivo and osteoblast phenotypic expression in vitro, but the mechanisms are not understood. To determine the roles of specific microarchitectural features in modulating osteoblast behavior, we used Ti surfaces prepared by electrochemical micromachining as substrates for MG63 osteoblast-like cell culture. Cell response was compared to tissue culture plastic, a sand-blasted with large grit and acid-etched surface with defined mixed microtopography (SLA), polished Ti surfaces, and polished surfaces electrochemically machined through a photoresist pattern to produce cavities with 100, 30 and 10 μm diameters arranged so that the ratio of the microscopic-scale area of the cavities versus the microscopic-scale area of the flat region between the cavities was equal to 1 or 6. Microstructured disks were acid-etched, producing overall sub-micron-scale roughness (Ra=0.7 μm). Cell number, differentiation (alkaline phosphatase; osteocalcin) and local factor levels (TGF-β1; PGE2) varied with microarchitecture. 100 μm cavities favored osteoblast attachment and growth, the sub-micron-scale etch enhanced differentiation and TGF-β1 production, whereas PGE2 depended on cavity dimensions but not the sub-micron-scale roughness.

Keywords
Titanium; Microarchitecture; Microstructure; Roughness; Photolithography; Osteoblasts; MG63 cells; PGE2; Surface; Electrochemical micromachining
First Page Preview
Differential regulation of osteoblasts by substrate microstructural features
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 14, May 2005, Pages 1837–1847
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us