fulltext.study @t Gmail

Growth of human cells on polyethersulfone (PES) hollow fiber membranes

Paper ID Volume ID Publish Year Pages File Format Full-Text
12379 791 2005 8 PDF Available
Title
Growth of human cells on polyethersulfone (PES) hollow fiber membranes
Abstract

A novel material of porous hollow fibers made of polyethersulfone (PES) was examined for its ability to support the growth of human cells. This material was made in the absence of solvents and had pore diameters smaller than 100 μm. Human cell lines of different tissue and cell types (endothelial, epithelial, fibroblast, glial, keratinocyte, osteoblast) were investigated for adherence, growth, spread and survival on PES by confocal laser microscopy after staining of the cells with Calcein-AM. Endothelial cell attachment and growth required pre-coating PES with either fibronectin or gelatin. The other cell types exhibited little difference in growth, spread or survival on coated or uncoated PES. All the cells readily adhered and spread on the outer, inner and cut surfaces of PES. With time confluent monolayers of cells covered the available surface area of PES and in some cases cells grew as multilayers. Many of the cells were able to survive on the PES for up to 7 weeks and in some cases growth was so extensive that the underlying PES was no longer visible. Scanning electron microscope observations of cells on the materials correlated with the confocal morphometric data. Thus, PES is a substrate for the growth of many different types of human cells and may be a useful scaffolding material for tissue engineering.

Keywords
Polyethersulfone; PES; Human cells; Biocompatibility; Cell compatibility
First Page Preview
Growth of human cells on polyethersulfone (PES) hollow fiber membranes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 14, May 2005, Pages 1877–1884
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us