fulltext.study @t Gmail

Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion

Paper ID Volume ID Publish Year Pages File Format Full-Text
12389 791 1976 8 PDF Available
Title
Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion
Abstract

Bone tissue engineering requires the ability to regulate cell behavior through precise control over substrate topography and surface chemistry. Understanding of the cellular response to micro-environment is essential for biomaterials and tissue engineering research. This research employed alumina with porous features on the nanoscale. These nanoporous alumina surfaces were modified by physically adsorbing vitronectin and covalently immobilizing RGDC peptide to enhance adhesion of osteoblasts, bone-forming cells. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize the modified nanoporous alumina surface. Survey and high-resolution C1s scans suggested the presence of RGDC and vitronectin on the surface and SEM images confirmed the pores were not clogged after modification. Cell adhesion on both unmodified and modified nanoporous alumina was compared using fluorescence microscopy and SEM. RGDC was found to enhance osteoblast adhesion after 1 day of culture and matrix production was visible after 2 days. Cell secreted matrix was absent on unmodified membranes for the same duration. Vitronectin-adsorbed surfaces did not show significant improvement in adhesion over unmodified membranes.

Keywords
Alumina; Bone tissue engineering; Nanotopography; Osteoblast; RGD peptide; XPS
First Page Preview
Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 14, May 2005, Pages 1969–1976
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us