fulltext.study @t Gmail

The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion

Paper ID Volume ID Publish Year Pages File Format Full-Text
12418 792 2004 8 PDF Available
Title
The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion
Abstract

There is an increasing interest in developing new methods to reduce bacteria adhesion onto polymeric materials that are used in biomedical implants. The antibacterial behavior on polyethylene terephthalate (PET) treated by acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) is investigated. The surface structure of the treated PET is determined by laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results show that a thin amorphous polymer-like carbon (PLC) layer is formed on the PET surface. Atomic force micrographs (AFM) show that C2H2 PIII-D significantly changes the surface morphology of PET. The capacities of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) to adhere onto PET are quantitatively determined by plate counting and Gamma-ray counting of 125I radio labeled bacteria in vitro. The results indicate that the adhesion of the two kinds of bacteria to PET is suppressed by PLC. The adhesion efficiency of SE on the coated surface is only about 14% of that of the untreated PET surface, and that of SA is about 35% of that of the virgin surface. The electrokinetic potentials of the bacterial cells and substrates are determined by zeta potential measurement. All the substrates as well as the bacterial strain have negative zeta potentials, and it means that bacterial adhesion is not mediated by electrostatic interactions. The surface energy components of the various substrates and bacteria are calculated based on measurements in water, formamide and diiodomethane. The surface free energies obtained are used to calculate the interfacial free energies of adhesion (ΔFAdh) of SA and SE onto various substrates, and it is found that bacterial adhesion is energetically unfavorable on the PLC deposited on PET by C2H2 PIII-D.

Keywords
Plasma immersion ion implantation-D (PIII-D); Amorphous polymer-like carbon film (PLC); Polyethylene terephthalate (PET); Bacteria adhesion
First Page Preview
The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 16, July 2004, Pages 3163–3170
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us