fulltext.study @t Gmail

Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
12424 792 2004 10 PDF Available
Title
Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering
Abstract

Iron-phosphate glass fibres based on the CaO–Na2O–Fe2O3–P2O5 system have been processed and characterised via thermal, XRPD, dissolution rates, diameter and biocompatibility studies. The compositions investigated were fixed at 50 mol% P2O5, and the CaO content was varied between 30, 35 and 40 mol%. The Fe2O3 was added in low amounts from 1–5 mol%, substituting it for the Na2O mol%.The number of Tc (crystallisation temperature) peaks detected from the thermal analysis traces only showed correlation with XRPD analysis, for five out of the 15 compositions investigated. It has been suggested that either the crystalline phases had very similar Tc temperatures or that the other phase(s) were present in very small quantities. There was a good match seen with number of Tm (melting temperature) peaks picked up from the DTA traces, with the number of phases identified from XRPD analysis. The main phases identified from XRPD were NaCa(PO3)3, CaP2O6 and NaFeP2O7.Using network connectivity (NC), predictions on Qn species present within the compositions investigated were made. The predicted species (metaphosphates) matched with phases identified from XRPD analysis.A decrease in dissolution rates for the bulk glass and glass fibres was seen with an increase in CaO mol%, along with an increase in Fe2O3 mol%. An increase in fibre dissolution rates was seen with a decrease in diameter size.The biocompatibility studies were conducted using a conditionally immortal muscle precursor cell line derived from the H-2Kb-tsA58 immortomouse. It was found that iron-phosphate glass fibres containing 4–5 mol% Fe2O3 was sufficient for cell attachment and differentiation. It was seen that myotubes formed along the axis of the fibres (which was indicative of differentiation). The biocompatibility of these compositions was attributed to the enhanced chemical durability of the glass fibres.

Keywords
Phosphate glass; Glass fibres; Muscle; Myoblast; Dissolution
First Page Preview
Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 16, July 2004, Pages 3223–3232
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us