fulltext.study @t Gmail

A novel chemical modification of bioprosthetic tissues using L-arginine

Paper ID Volume ID Publish Year Pages File Format Full-Text
12512 795 2003 8 PDF Available
Title
A novel chemical modification of bioprosthetic tissues using L-arginine
Abstract

A novel chemical modification of biological tissues was developed by the direct coupling of bioactive molecule, L-arginine to bovine pericardium (BP). The modification involves pretreatment of BP using GA and followed by grafting arginine to BP by the reaction of residual aldehyde and amine group of L-arginine. BP was modified by direct coupling of bioactive molecules and the effect of L-arginine coupling on calcification and biocompatibility was evaluated in vitro and in vivo.Modified BPs were characterized by measuring shrinkage temperature, mechanical properties, digestion resistance to collagenase enzyme, in vitro plasma protein adsorption and platelet adhesion, and in vivo calcification. Thermal and mechanical properties showed that the durability of arginine treated tissue increased as compared with fresh tissue and GA treated tissue. Resistance to collagenase digestion revealed that modified tissues have greater resistance to enzyme digestion than did fresh tissue and GA treated tissue. Lower protein adsorption and platelet adhesion were observed on modified tissue than non-modified tissue. In vivo calcification study demonstrated much less calcium deposition on arginine treated BP than GA treated one. Obtained results attest to the usefulness of L-arginine treated BP for cardiovascular bioprostheses.

Keywords
Bioprosthesis; Tissue modification; L-Arginine; Anticalcification
First Page Preview
A novel chemical modification of bioprosthetic tissues using L-arginine
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 20, September 2003, Pages 3409–3416
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us