fulltext.study @t Gmail

In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
1256 80 2001 11 PDF Available
Title
In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering
Abstract

Scaffolds for tissue engineering should be biocompatible and stimulate rapid blood vessel ingrowth. Herein, we analyzed in vivo the biocompatibility and vascularization of three novel types of biodegradable porous polyurethane scaffolds. The polyurethane scaffolds, i.e., PU-S, PU-M and PU-F, were implanted into dorsal skinfold chambers of BALB/c mice. Using intravital fluorescence microscopy we analyzed vascularization of the implants and venular leukocyte–endothelial cell interaction in the surrounding host tissue over a 14 day period. Incorporation of the scaffolds was analyzed by histology, and a WST-1 assay was performed to evaluate their cell biocompatibility in vitro. Our results indicate that none of the polyurethane scaffolds was cytotoxic. Accordingly, rolling and adherent leukocytes in venules of the dorsal skinfold chamber were found in a physiological range after scaffold implantation and did not significantly differ between the groups, indicating a good in vivo biocompatibility. However, the three scaffolds induced a weak angiogenic response with a microvessel density of only ∼47–60 and ∼3–10 cm/cm2 in the border and centre zones of the scaffolds at day 14 after implantation. Histology demonstrated that the scaffolds were incorporated in a granulation tissue, which exhibited only a few blood vessels and inflammatory cells. In conclusion, PU-S, PU-M and PU-F scaffolds may be used to generate tissue constructs which do not induce a strong inflammatory reaction after implantation into patients. However, the scaffolds should be further modified or conditioned in order to accelerate and improve the process of vascularization.

Keywords
Scaffold; Polyurethane; Vascularization; Biocompatibility; Dorsal skinfold chamber
First Page Preview
In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 6, July 2009, Pages 1991–2001
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us