fulltext.study @t Gmail

Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide)

Paper ID Volume ID Publish Year Pages File Format Full-Text
1257 80 2012 11 PDF Available
Title
Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide)
Abstract

Natural source poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with a low hydroxyvalerate (HV) content (∼8 wt.%) was modified by blending it with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide) (HE) alternating block copolymer. We hypothesized that the adjoining PHB segments could improve the miscibility of the poly(ethylene oxide) segments of HE with the PHBV matrix and therefore improve the physical properties of the PHBV/HE blends. A differential scanning calorimetry study revealed the improved miscibility of PEO segments of HE characterized by the interference of the crystallization of PHBV. The decrease in water contact angle and the increase in equilibrium water uptake of the PHBV/HE blends indicated that both the surface and bulk hydrophilicity of PHBV could be improved through blending HE. The mechanical properties of the hydrated PHBV/HE blends were assessed by measuring their tensile strength. In contrast to the hydrated natural source PHBV, which failed in a brittle manner, the hydrated PHBV/HE blends were ductile. Their strain at break increased with increasing HE content, reaching a maximum of 394% at an HE content of 15 wt.%. The excellent integrity of the PHBV/HE blends in water is attributed to the strong affinity between the PHB segments of HE and the PHBV matrix. Platelet adhesion on the film surface of the PHBV/HE blends was investigated in vitro to evaluate their blood compatibility. The results demonstrated that the PHBV/HE blends effectively resisted the adhesion of platelets due to the anchored PEO segments from HE on the film surface.

Keywords
Poly(hydroxyalkanoates); Poly[(R)-3-hydroxybutyrate]; Poly[(R)-3-hydroxyvalerate]; Poly(ethylene oxide); Blending
First Page Preview
Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide)
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 6, July 2009, Pages 2002–2012
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us