fulltext.study @t Gmail

Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition

Paper ID Volume ID Publish Year Pages File Format Full-Text
12748 814 2005 10 PDF Available
Title
Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition
Abstract

Interactions between epidermal–dermal cells via soluble factors provide important signals in regulating the reepithelialization of wounded skin. For example, keratinocytes regulate the expression of keratinocyte growth factor (KGF) in fibroblasts through the release of interleukin-1beta (IL-1β). In this study, a previously developed polyethyleneglycol-based interpenetrating network (IPN) system was utilized as a platform for the delivery of keratinocyte-active factors. The effect of substrate chemistry, culture condition, and the delivery of exogenous keratinocyte-active factors on the keratinocyte behavior and the keratinocyte-fibroblast paracrine relationship was delineated. Adherent keratinocyte density on TCPS and glutaraldehyde-fixed gelatin hydrogels but not on IPN was significantly increased with culture time in the presence of growth supplements independent of the released KGF from the gelatin hydrogel and IPN. In the presence of fibroblasts, adherent keratinocyte density on gelatin hydrogels was higher than that without fibroblasts. This phenomenon was not observed on IPN and polycarbonate membrane. In summary, the delivered exogenous huKGF (i.e., released from a biomaterial matrix) operates in tandem with fibroblasts in regulating keratinocyte activation (i.e., IL-lβ release and adhesion) in a surface-dependent manner. Immunoassay analysis of cell culture keratinocyte-fibroblast paracrine relationship as characterized by IL-1β and KGF could not be established in the presence of IPNs, 0.1% glutaraldehyde-fixed gelatin hydrogels, and polycarbonate membranes.

Keywords
Hydrogels; PEG; Cell adhesion; Fibroblast co-culture; huKGF
First Page Preview
Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 17, June 2005, Pages 3673–3682
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us