fulltext.study @t Gmail

Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide)

Paper ID Volume ID Publish Year Pages File Format Full-Text
12806 818 2005 9 PDF Available
Title
Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide)
Abstract

Polydimethylsiloxane elastomers were surface modified with passivating polyethylene oxide (PEO) polymers of different molecular weights, both monofunctional and bifunctional. Following the introduction of Si–H groups on the surfaces by acid-catalyzed equilibration in the presence of polymethylhydrosiloxane, the PEO was linked by platinum-catalyzed hydrosilylation. ATR-FTIR, X-ray photoelectron spectroscopy (XPS) and water contact angle results confirmed that the PEO was successfully grafted to the silicone rubber. Atomic force microscopy and XPS suggested that surface coverage with PEO was very high on the modified surfaces but not complete. The protein-resistant properties of the PEO-modified surfaces were demonstrated by measuring the adsorption of fibrinogen from both buffer and plasma. Fibrinogen adsorption from buffer to the PEO-modified surfaces was reduced by more than 90% compared with controls.

Keywords
PEO; PDMS; Hydrosilylation; Protein adsorption
First Page Preview
Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide)
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 15, May 2005, Pages 2391–2399
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us