fulltext.study @t Gmail

Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
12818 818 2005 9 PDF Available
Title
Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells
Abstract

Hyaluronic acid (HA), a major component of the cardiac jelly during heart morphogenesis, is a polysaccharide that upon modification can be photopolymerized into hydrogels. Previous work in our lab has found that photopolymerizable HA hydrogels are suitable scaffolds for the culture and proliferation of valvular interstitial cells (VICs), the most prevalent cell type in native heart valves. The physical properties of HA gels are easily modified through alteration in material crosslink density or by copolymerizing with other reactive macromolecules. Degradation products of HA gels and the starting macromers significantly increased VIC proliferation when added to cell cultures. With low molecular weight HA (<6700 Da) exhibiting greatest stimulation of VIC proliferation. Low molecular weight HA degradation products added to VIC cultures also resulted in a four-fold increase in total matrix production and a two-fold increase in elastin production over untreated controls. VIC internalization of HA, as shown by cellular uptake of fluorescently labeled HA, likely activates signaling cascades resulting in the biological responses seen here. Lastly, VICs encapsulated within HA hydrogels remained viable, and significant elastin production was observed after 6 weeks of culture. This work shows promise for the creation of a tissue-engineered heart valve utilizing the synergistic relationship between hyaluronic acid and VICs.

Keywords
Hyaluronic acid; Hydrogel; Photopolymerization; Heart valve; Extracellular matrix
First Page Preview
Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 15, May 2005, Pages 2517–2525
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us