fulltext.study @t Gmail

Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture

Paper ID Volume ID Publish Year Pages File Format Full-Text
12828 818 2005 9 PDF Available
Title
Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture
Abstract

Biologically derived, chemically modified collagenous tissues are being increasingly used to fabricate cardiac valve prostheses and as biomaterials in cardiovascular repair. A stress-free state during chemical modification has been shown to preserve the collagen fiber architecture of the native tissue, potentially preserving native mechanical properties and improving prostheses durability. However, it is not known if the native collagen fiber architecture is stable during long-term in vivo operation. To address this question, we obtained porcine aortic valves chemically treated at (i) 0 mmHg transvalvular pressure (with 40 mmHg aortic pressure) and (ii) 4 mmHg transvalvular pressure, then subjected the valves to 0,1×106, 50×10650×106, and 200×106200×106 in vitro accelerated wear testing (AWT) cycles. The resulting changes in collagen fiber architecture were quantified using small angle light scattering analysis (SALS). SALS measurements indicated that collagen fibers in the 0 mmHg pressure-fixed leaflets became more aligned between 1×1061×106 and 50×10650×106 AWT cycles. In contrast, only minor changes (not statistically significant) in collagen fiber orientation occurred in the 4 mmHg pressure-fixed valvular tissue with cycling. It was also noted that although the 0 mmHg group was fixed without transvalvular pressure, distention of the root induced significant changes in collagen structure of the leaflets. Overall, our observations suggest that the native collagen fiber crimp of the 0 mmHg pressure-fixed leaflets were rapidly lost after only 50×10650×106 AWT cycles (equivalent to ∼1.6∼1.6 patient years) and thus may not be maintained over a sufficient period of time to be clinically beneficial. Further, the collagen structure of the native aortic valve is exquisitely sensitive to dimensional change in the aortic root—independent of the presence of transvalvular pressure. Our findings also suggest that without in vivo remodeling, any collagenous tissue used to fabricate BHV may undergo similar degenerative, irreversible changes in vivo.

Keywords
Heart valves; Collagen; Chemical fixation; Cyclic loading; Fatigue
First Page Preview
Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 15, May 2005, Pages 2611–2619
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us