fulltext.study @t Gmail

Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
12836 818 2005 10 PDF Available
Title
Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells
Abstract

Our goal is to develop, characterize and optimize functionalized super paramagnetic iron oxide nanoparticles (SPION) demonstrating the capacity to be internalized by human cancer cells. SPION (mean diameter 9 nm) were coated with various ratios to iron oxide of either polyvinyl alcohol (PVA), carboxylate-functionalized PVA, thiol-functionalized PVA and amino-functionalized PVA (amino-PVA). The interaction with cells and cytotoxicity of the SPION preparations were determined using human melanoma cells. From the four functionalized SPION preparations, only the amino-PVA SPION demonstrated the capacity to interact with, and were not cytotoxic to, human melanoma cells. This interaction with melanoma cells was dependent on the amino-PVA to iron oxide ratio, was an active and saturable mechanism displayed by all cells in a culture. These functionalized SPION were characterized by transmission electron microscopy and electrophoretic mobility. The physical comportment of SPION changed at specific PVAs to iron oxide ratios, and this ratio corresponded to the ratio of optimal interaction with cells. In conclusion, the successful development of functionalized SPION displaying potential cellular uptake by human cancer cells depends both on the presence of amino groups on the coating shell of the nanoparticles and of its ratio to the amount of iron oxide.

Keywords
Melanoma; Human; Iron oxide nanoparticles; Particle size-cell uptake; PVA
First Page Preview
Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 26, Issue 15, May 2005, Pages 2685–2694
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us