fulltext.study @t Gmail

Drug release from starch-acetate microparticles and films with and without incorporated α-amylase

Paper ID Volume ID Publish Year Pages File Format Full-Text
12941 822 2004 8 PDF Available
Title
Drug release from starch-acetate microparticles and films with and without incorporated α-amylase
Abstract

Acetylation of starch considerably decreases its swelling and enzymatic degradation. Thus, starch-acetate (SA) based delivery systems may be suitable for controlled drug delivery. The aim of the present study was to evaluate drug release from the SA microparticles (SA mps) and SA films. The average degree of acetyl substitution (DS) per glucose residue in the starch was either 1.9 (SA DS 1.9) or 2.6 (SA DS 2.6). Timolol (mw 332), calcein (mw 623) and bovine serum albumin (BSA, mw 68,000) were used as model drugs. A continuous timolol release from the both SA mps was observed in phosphate buffer solution (PBS) pH 7.4 (50-days incubation). The release of timolol was faster from the SA DS 1.9 mps than from the SA DS 2.6 mps. Calcein release from both SA mps was continuous in PBS pH 7.4 (5-days incubation). But, calcein release profile from the SA DS 2.6 film in PBS pH 7.4 showed discontinuities. However, the release of calcein from both SA films was continuous in human serum in vitro during the 7-day incubation, i.e. enzymes enhanced calcein release. Thus, α-amylase was incorporated into the SA films in order to enhance drug release from the films. However, the effects of incorporation of α-amylase on the model macromolecule (BSA) release from the SA films were modest. In conclusion, this study demonstrates the achievement of slow release of different molecular weight model drugs from the SA mps and films as compared to fast release from the native starch preparations. DS of SA, physicochemical properties of a drug and the presence of enzymes can all affect drug release profiles from SA based preparations.

Keywords
Starch acetate; Microparticle; Film; Controlled drug release; α-amylase; Erosion
First Page Preview
Drug release from starch-acetate microparticles and films with and without incorporated α-amylase
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 18, August 2004, Pages 4355–4362
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us