fulltext.study @t Gmail

In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
12943 822 2004 8 PDF Available
Title
In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles
Abstract

Poly (n-butyl cyanoacrylate) (PBCA) nanoparticles were prepared by a dispersion polymerisation process in water at pH 3 and using dextran as a stabilising agent. The drug insulin was introduced during the latter stages of particle synthesis and was found not to interfere with the polymer structure, molecular weight, and the particle size. Nanoparticles were exposed to the enzyme esterase in phosphate buffered saline solution at 37°C for time periods up to 4 h. Esterase catalyses the degradation of the PBCA through hydrolysis of the side chain on the repeat unit with the release of butanol, and this was monitored as an indicator of degradation. The release of both butanol and insulin occurred via similar biphasic processes, with an initial burst release from the surface, followed by a slower diffusionally hindered release associated with particle erosion. Hydrolysis of the nanoparticle polymer was confirmed by infrared spectroscopy. Particle size reduces with time of exposure to esterase, but is greatest in the first 30 min of exposure. Despite the hydrolysis reaction, and reduction in particle size, there was no reduction in residual polymer molecular weight suggesting a progressive loss of entire chains from the active surface. Polymer loss is thought to occur through either solvation of degradation residue or through complete depolymerisation of hydrolysed chains.

Keywords
Drug delivery systems; Drug release; Biodegradation; Poly (n-butylcyanoacrylate) nanoparticles; Insulin; Esterase
First Page Preview
In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 18, August 2004, Pages 4375–4382
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us