fulltext.study @t Gmail

Nano-structured polymers enhance bladder smooth muscle cell function

Paper ID Volume ID Publish Year Pages File Format Full-Text
12989 826 2003 12 PDF Available
Title
Nano-structured polymers enhance bladder smooth muscle cell function
Abstract

It is the hypothesis of the present study that a biocompatible material which mimics the nanometer topography of native bladder tissue will enhance cellular responses and lead to better tissue integration in vivo. Previous in vitro studies have verified the ability to successfully reduce the surface feature dimensions of poly(lactic-co-glycolic acid) (PLGA) and poly(ether urethane) (PU) films into the nanometer regime via chemical etching procedures. Results from these studies also provided the first evidence that bladder smooth muscle cell adhesion was enhanced on chemically treated nano-structured polymeric surfaces compared to their conventional counterparts. Although cell adhesion is necessary for a biomaterial's success, subsequent cell functions (such as long-term cell growth and proliferation) are also critical for tissue ingrowth and long-term implant survival. The present in vitro study, therefore, investigated the function of bladder smooth muscle cells on these novel, nano-structured polymers over the expanded periods of 1, 3 and 5 days. Results indicated that cell number was influenced by both surface roughness and surface chemistry changes; the important contributor, however, was increased nanometer surface roughness. This claim is supported by the fact that cell number was enhanced on nano-structured compared to conventional PLGA and PU once chemistry changes were eliminated using casting techniques.

Keywords
Nano-structured; Poly(lactide-co-glycolide); Poly(ether urethane); Bladder; Cell function
First Page Preview
Nano-structured polymers enhance bladder smooth muscle cell function
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 17, August 2003, Pages 2915–2926
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us