fulltext.study @t Gmail

Blends of isoprene–styrene/methacrylate monomer systems as denture soft lining material

Paper ID Volume ID Publish Year Pages File Format Full-Text
12999 827 2001 7 PDF Available
Title
Blends of isoprene–styrene/methacrylate monomer systems as denture soft lining material
Abstract

This work further develops the concept of using an elastomer gelled with methacrylate monomers to produce a methacrylate-based soft lining material without the use of a plasticizer. An isoprene–styrene (SIS) block copolymer was mixed with methyl methacrylate (MMA) and 1,6-hexandiol dimethacrylate (HDMA). The HDMA was used as a cross-linking agent. The elastomer/monomer ratios were maintained at 50/50 whereas the monomers ranged from 0 to 100% HDMA. Mechanical properties and water absorption/desorption characteristics were used to assess the effect of varying the monomer compositions. The results indicated that phase separation took place, in particular at high HDMA content. This significantly increased the Young's modulus and decreased the elongation to break. Generally, the water uptake tended to decrease with increasing HDMA content, reflecting the effect of modulus. Second absorption cycles gave higher uptake values compared to the first. Formulations with a high amount of HDMA gave materials with modulus values too high for soft lining applications. This suggests that the optimum formulation requires a compromise between modulus and water uptake.

Keywords
Soft lining materials; Water absorption; Isoprene–styrene copolymers; Methacrylate monomers; Rubber-toughened plastics
First Page Preview
Blends of isoprene–styrene/methacrylate monomer systems as denture soft lining material
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 22, Issue 15, 1 August 2001, Pages 2087–2093
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us