fulltext.study @t Gmail

Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release

Paper ID Volume ID Publish Year Pages File Format Full-Text
1304 81 2009 10 PDF Available
Title
Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release
Abstract

Fe3O4 nanoparticles were stabilized using different functional polysaccharides, such as chitosan (CS), O-carboxymethylchitosan (OCMCS) and (N-succinyl-O-carboxymethylchitosan (NSOCMCS) to improve their bioactivity. The release profile and the in vitro cancer cell inhibition activity of camptothecin (CPT) loaded polysaccharide modified Fe3O4 nanoparticles were systematically studies. The particle size and size distribution of CPT-loaded polysaccharide modified Fe3O4 nanoparticles were found to be strongly dependent on polysaccharide character. Such polysaccharide character could also affect CPT adsorption efficiency, CPT release behavior and bovine serum albumin (BSA) unspecific binding capacity. After 24 h incubation of 7721 cancer cells with CPT-loaded polysaccharide modified Fe3O4 nanoparticles, significant changes in cell morphology could be discernible from phase contrast microscopy. Cytotoxicity assay showed these polysaccharide modified Fe3O4 nanoparticles did not exhibit noteworthy cytotoxicity against 7721, however, the in vitro inhibition rate of CPT-loaded polysaccharide modified Fe3O4 nanoparticles against 7721 liver cancer cell increased significantly in comparison with that of CPT-free drug.

Keywords
Chitosan; O-Carboxymethylchitosan; N-Succinyl-O-carboxymethylchitosan; Superparamagnetic iron oxide nanoparticles; Camptothecin (CPT)
First Page Preview
Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 5, June 2009, Pages 1489–1498
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us