fulltext.study @t Gmail

Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste

Paper ID Volume ID Publish Year Pages File Format Full-Text
13046 828 2004 10 PDF Available
Title
Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste
Abstract

The development of the new technologies of bone tissue engineering requires the production of bioresorbable macroporous scaffolds. Calcium phosphate cements are good candidate materials for the development of these scaffolds, as an alternative to the traditional porous sintered ceramics. In this work a novel two-step method, based in the foaming of an α-tricalcium phosphate (α-TCP) cement paste and its subsequent hydrolysis to a calcium deficient hydroxyapatite (CDHA) is presented. The foaming agent was a hydrogen peroxide (H2O2) solution, which decomposes in water and oxygen gas. CDHA foams, which combined an interconnected macroporosity with a high microporosity were obtained. The apatitic phase obtained by the hydrolysis reaction was more similar to the biologic one, in terms of chemical composition, crystallinity and specific surface than the hydroxyapatites obtained by sintering. The percentage of porosity in the foams reached a 66%. It was shown that it was possible to control the porosity, and pore size and shape by different processing parameters such as the liquid-to-powder ratio, the concentration of the H2O2 solution and the particle size of the powder.

Keywords
Calcium phosphate cements; Scaffold; Porosity; Bone tissue engineering
First Page Preview
Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 25, Issue 17, August 2004, Pages 3671–3680
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us