fulltext.study @t Gmail

Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants

Paper ID Volume ID Publish Year Pages File Format Full-Text
1307 81 2009 12 PDF Available
Title
Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants
Abstract

Shape memory materials have been proposed for cardiovascular stents due to their self-expansion ability. The most ideal way to anchor a stent is using self-expansion in the range of body temperature. This work, for the first time, reports the use of polyurethane/polycaprolactone (PU/PCL) blend as a proposed material for shape memory stents. Polyurethane copolymer based on poly(ε-caprolactone) diol was melt blended with PCL in four different ratios of 20, 30, 40 and 50 wt.% and their shape memory behaviors were examined. All blends except for PU/PCL(80/20) showed shape memory effects with recovery temperatures of around the melting temperature of PCL in the blends. The melting behavior of the PCL in the blends is strongly influenced by composition. Changing the composition of the blend system and crystallization conditions adjusted shape recovery to the range of body temperature for PU/PCL(70/30) blend. The in vitro biocompatibility of PU/PCL(70/30) blend was evaluated in this study using human bone marrow mesenchymal stem cells (hBMSCs). The adhesion, morphology and mitochondrial function were analyzed in order to investigate the cell viability during cell culture on PU/PCL(70/30) blend surface. The results showed that the blend supported cell adhesion and proliferation, which indicated good biocompatibility. Our results suggested that this blend might be a potential material as a stent implant.

Keywords
Shape memory; Stent; Polyurethane; Polycaprolactone; Cell culture
First Page Preview
Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 5, Issue 5, June 2009, Pages 1519–1530
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us