fulltext.study @t Gmail

Volumetric contraction and methacrylate conversion in photo-polymerized amorphous calcium phosphate/methacrylate composites

Paper ID Volume ID Publish Year Pages File Format Full-Text
13104 831 2003 7 PDF Available
Title
Volumetric contraction and methacrylate conversion in photo-polymerized amorphous calcium phosphate/methacrylate composites
Abstract

Because of its relatively high solubility in aqueous media and its rapid transformation to hydroxyapatite, amorphous calcium phosphate (ACP) has been utilized as the filler phase of resin-based bioactive composites that have remineralization potential. The objectives of this study were to determine how various methacrylate resins and various types of ACP fillers affect acrylic vinyl conversion and polymerization shrinkage (PS). Several types of photo-crosslinkable resin systems were prepared and admixed with a mass fraction of 40% of either unhybridized, silica- or zirconia-hybridized ACP. After visible light-activated photo-polymerization ACP composites were assessed by near infrared spectroscopy for degree of vinyl conversion and by mercury dilatometry for PS. It was found for these composites that vinyl conversion was independent of filler type but strongly dependent on the type and composition of the resin phase. PS, on the other hand, showed more complex dependence both on the resin type and composition and, in some cases, on the type of ACP. In order to obtain ACP/methacrylate-based composites with maximal vinyl conversion, resin type and composition are of primary importance. However, in order to minimize volume contraction on polymerization it appears necessary to consider both the resin and filler type of these bioactive composites.

Keywords
Amorphous calcium phosphate; Methacrylate composites; Degree of conversion; Polymerization shrinkage
First Page Preview
Volumetric contraction and methacrylate conversion in photo-polymerized amorphous calcium phosphate/methacrylate composites
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 14, June 2003, Pages 2443–2449
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us