fulltext.study @t Gmail

A biodegradable fibrin scaffold for mesenchymal stem cell transplantation

Paper ID Volume ID Publish Year Pages File Format Full-Text
13109 831 2003 6 PDF Available
Title
A biodegradable fibrin scaffold for mesenchymal stem cell transplantation
Abstract

A potential therapy to enhance healing of bone tissue is to deliver isolated mesenchymal stem cells (MSCs) to the site of a lesion to promote bone formation. A key issue within this technology is the development of an injectable system for the delivery of MSCs. Fibrin gel exploits the final stage of the coagulation cascade in which fibrinogen molecules are cleaved by thrombin, convert into fibrin monomers and assembled into fibrils, eventually forming fibers in a three-dimensional network. This gel could have many advantages as a cell delivery vehicle in terms of biocompatibility, biodegradation and hemostasis. The objective of this study was to explore the possibility of using fibrin gel as a delivery system for human MSCs (HMSCs). To this end we have determined the optimal fibrinogen concentrations and thrombin activity for loading HMSCs in vitro into the resultant fibrin gels to obtain cell proliferation. We found that a concentration of 18 mg/ml of fibrinogen and a thrombin activity of 100 IU/ml was optimal for producing fibrin scaffolds that would allow good HMSCs spreading and proliferation. In these conditions, cells were able to proliferate and expressed alkaline phosphatase, a bone marker, in vitro. When implanted in vivo, HMSCs were able to migrate out of the fibrin gel and invade a calcium carbonate based ceramic scaffold suggesting that fibrin gel could serve as a delivery system for HMSCs.

Keywords
Fibrin; Mesenchymal stem cells; Scaffold; Periosteum; Bone repair
First Page Preview
A biodegradable fibrin scaffold for mesenchymal stem cell transplantation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 24, Issue 14, June 2003, Pages 2497–2502
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us